US009455747B1

a2 United States Patent

10) Patent No.: US 9,455,747 B1

Lin et al. 45) Date of Patent: Sep. 27,2016
(54) PARALLEL CHIEN SEARCH WITH 2008/0215956 Al* 9/2008 Williamson et al. 714/785
FOLDING AND A SYMBOLIZED MINIIAL (Rt 7 10200 chmat o i
POLYNOMIAL COMBINATIONAL 2010/0199156 AL* 82010 Y;irgjgmenet . 714/785
NETWORK (S-MPCN) 2011/0239091 AL* 9/2011 Toda w.ooooeiivvrcevrrrreoe 714/767
2011/0296281 A1 12/2011 Lin et al.
(71) Applicant: SK Hynix Inc., Gyeonggi-do (KR) 2014/0068392 Al* 3/2014 Kokubun et al. 714/785
(72) Inventors: Yi-Min Lin, San Jose, CA (US); OTHER PUBLICATIONS
Abhiral.n Pr.abhakar, Fremont, CA Song et al., “10- and 40-Gb/s Forward Error Correction Devices for
(US); Linggi Zeng, San Jose, CA (US); Optical Communications”, IEEE Journal of Solid-State Circuits,
Jason Bellorado, San Jose, CA (US) vol. 37, No. 11, Nov. 2002.
Yang et al., “An Area-Efficient BCH Codec with Echelon Sched-
(73) Assignee: SK Hynix Inc., Gyeonggi-do (KR) uling for NAND Flash Applications”, IEEE ICC, 2013.
Cha._ng et al,, “A Low-Power Reed-Solomon Decoder for STM-16
(*) Notice: Subject to any disclaimer, the term of this Optical Communications”, 2002.))
. f Lin et al., “A MPCN-Based Parallel Architecture in BCH Decoders
patent is extended or adjusted under 35 o, . o
USC. 154(b) by 103 d for NAND Flash Memory Devices”, IEEE Transactions on Circuits
ki (b) by ays. and Systems—II: Express Briefs, vol. 58, No. 10, Oct. 2011.
Chen et al., “Small Area Parallel Chien Search Architectures for
(21) Appl. No.: 14/223,643 Long BCH Codes”, IEEE Transactions on Very Large Scale
. Integration(VLSI) Systems, vol. 12, No. 5, May 2004.
(22) Filed: Mar. 24, 2014 Cho et al., “Strength-Reduced Parallel Chien Search Architecture
for Strong BCH Codes”, IEEE Transactions on Circuits and Sys-
Related U.S. Application Data tems—II: Express Briefs, vol. 55, No. 5, May 2008.
(60) Provisional application No. 61/805,765, filed on Mar. * cited by examiner
27, 2013.
Primary Examiner — Bryce Bonzo
(51) Int. CL Assistant Examiner — Thien D Nguyen
HO3M 13/00 (2006.01) (74) Attorney, Agent, or Firm — 1P & T Group LLP
HO3M 13/15 (2006.01)
(52) US. CL (57) ABSTRACT
CPC HO3M 13/, 1575. (2013.01); HO3M 13/152 A hinge path is used to determine if a first possible root is
. . (20.13'01)’ HO3M 13/616 (2013.01) a root of an error location polynomial. A positive limb path
(58) Field of Classification Search is used to determine if a second possible root is a root of the
CPC .. HO3M 13/1575; HO3M 13/152; HO3M error location polynomial, including by using a sequence of
o . 13/616 coeflicients associated with the error location polynomial.
See application file for complete search history. The sequence of coeflicients is reversed and a negative limb
. path is used to determine if a third possible root is a root of
(56) References Cited the error location polynomial, including by using the
U.S. PATENT DOCUMENTS reversed sequence of coeflicients, wherein the negative limb
path is a copy of the positive limb path.
2004/0010742 Al* 1/2004 Williamson et al. 714/746
2005/0172208 Al* 8/2005 YOON ..c.ccoeovvevivecucnncnes 714/784 15 Claims, 12 Drawing Sheets

100

102

Read Processor

BCH Encoded
Data 104
BCH Decoder
108 108 110
i Parallel
f Chien
Polynomial .
Syndrome Syndromes Eq’::zon v SeFar::;? with
Calculator olding
Solver and/or S-
MPCN
I
¥

Decoded
Data

U.S. Patent Sep. 27, 2016 Sheet 1 of 12 US 9,455,747 B1

100
Storage
102
A Z
BCH Encoded Read Processor
Data 104
P
BCH Decoder
106 108 110
A P -~ Z
Error Parallel
Location (?hien
Syndromes Ke Polynomial .
Syndrome y . Equa%lion y | Selfrlcdh with
Calculator olding
Solver and/or S-
MPCN
A 4
Decoded
Data

FIG. 1

U.S. Patent Sep. 27, 2016 Sheet 2 of 12 US 9,455,747 B1

(Start)

A

Determine if a first possible root is a root of an |~ 200
error location polynomial

A

Use a positive limb path to determine if a
second possible root is a root of the error

location polynomial, including by using a 202
sequence of coefficients associated with the
error location polynomial

) 204

Reverse the sequence of coefficients 4

A
Use a negative limb path to determine if a third

possible root is a root of the error location 206

%

polynomial, including by using the reversed
sequence of coefficients, wherein the negative
limb path is a copy of the positive limb path

End

FIG. 2

U.S. Patent Sep. 27, 2016 Sheet 3 of 12 US 9,455,747 B1

A@®), ANa®), ...
ANa’y, Ma®), ...
N@®) , A@®), ...
N@®) , M@, ...
ANa®y , Ma®), ...
AN@®) , A@™®), ...
N@®) , A@™®), ...
A", A"y, ...

Sequence of
Coefficients
(A, Aty - A, No)
A A, NN

300
~

Hinge Path > A(a°), A(@™), ...

304
A

Sequence
Reverser

A@™), A@™), ...
A@?), Na™), ...
Na®), AMa®), ...
Aa™), Na'), ...
A@®), A@™, ...
Na®), AM@™), ...
A7), A, ...

Reversed Sequence
of Coefficients
(Nos A1y oo Aty)
N, AL AL A

Negative Hinge Path is a
Copy of the Counterpart
Positive Hinge Path

FIG. 3A

U.S. Patent Sep. 27, 2016 Sheet 4 of 12
— 352a
g 4 20
Sequence of » LimbPath4 —> A(a®), Ao®), ...
Coefficients — A@®), A@@™), ...
(Aw Act, .. Av, o)
A Aty .. AL AD) | S AE), A@®),
» - LimbPath 1 A@@"), Ala"), ...
Vs 350a
Hinge Path > A(@®), A(a@™), ...
Ve 354a — 356a
Sequence .
7 Reqverser Aa™), AN@®), ...
Aa?), A@™), ...
Reversed Sequence 3 13
of Coefficients Aa™), Ma™), ...
Aoy A1y oo A,)
A AV I AV Y A Vs
(No's t1 M) ,— 352b
n . 12 28
Sequence of > LimbPath4 |—> A@?), A@®) ...
Coefficients — A, A@®), ...
(At Ny oo A, No)
A A, oo A AS) — A(@"), A(@®),
» - LimbPath-1 > A(0®), A(0®),
)s 350b
Hinge Path > A(@®), A@®), ...
Vs 354b — 356b
Sequence
7 Reqverser Aa"), A@®), ...

Reversed Sequence
of Coefficients
(Ao, A1y oo A,)
A", Ay Nt YY)

N@®), A(@®), ...
N@®), A@®), ...

Positive Hinge Path

US 9,455,747 B1

Negative Hinge Path is a
Copy of the Counterpart

U.S. Patent Sep. 27, 2016 Sheet 5 of 12 US 9,455,747 B1

— 400

A@’) =M (x)x O,(x)+ Bl.(x)|x=al. +=B(a')+1

t
] m—1 j i
=D N, ¥ Al x+ Al)|]
j=1
S-MPCN i S-BTi
— 410

AMa™)= B (a”)+1

X=a

! !
=>"A (x mod le.(x))|x=azz.+1= DA mod M (x| L+
j=1 j=t

t
S | | y
- Zl(Aja,f,_m}xm tot A +Aja({,(f>)|x=a” +1=B.(a¥)+1

L

——— —A
S-MPCN i S-BT 2i

S-MPCN = Symbolized Minimal Polynomial
Combinational Network
S-BT = Symbolized Basis Transformer

— 420
- Q2 ati o
i=1 at a? at a®
i=3 as a® al? a’t
i=5 o5 10 220 N
i=7 a’ alt 28 256

FIG. 4

U.S. Patent Sep. 27, 2016 Sheet 6 of 12 US 9,455,747 B1

(Start)

A
Generate a remainder polynomial using a
symbolized minimal polynomial combinational
network

- 500

A

Evaluate the remainder polynomial at a first

possible root of an error location polynomial |- 502

using a first symbolized basis transformer
associated with the first possible root

A

Evaluate the remainder polynomial at a second
possible root of the error location polynomial
using a second symbolized basis transformer |- 504

associated with the second possible root,
wherein the first possible root and the second
possible root are conjugates

End

FIG. 5

U.S. Patent

S-MPCN = Symbolized Minimal Polynomial
Combinational Network
S-BT = Symbolized Basis Transformer

FIG. 6

..

Sep. 27, 2016 Sheet 7 of 12 US 9,455,747 B1
600
e sweent 0
; | £Dr>{s-BT, b Adat)
i [N
“»{S-MPCN', »[S-MPCN | . . . —%{S-MPCNY A, |! %< 602
NS S SRR — A(a(2+w))
% 604
610 .
[R SMPCNS ... P \
i | ———DHS BT A
1 A |
S MPCN', MS-MPCN%| . . . M S-MPONS| A, | - 614
e , A(06+PD)
%~ 616
> .
| ; DA (.T’ﬂ“)\‘\
p-ACT)
aP azp atr Ao '
D D I 618
Y
E Hinge
v i Path
AZ /"

U.S. Patent Sep. 27, 2016 Sheet 8 of 12 US 9,455,747 B1

700
—
ai aZi a4i a8i aléi a32i
i = 1 CKl C{Z a4- CZ8 CZ16 CZ32
i=3 a3 a® ql? a2t _ -
i = a’® 10 20 - - -
i = a’ al? a?8 - - _
i = a’ a'® - - - -
i=11 | a'! a?? - - - -
Cost of S-MPCN i — 13 e 476])]]
Block Increases as
the Magnitude of i i =15 als 30 - - - -

Increases

FIG. 7

U.S. Patent Sep. 27, 2016 Sheet 9 of 12 US 9,455,747 B1

(Start)

A

Determine if a first possible root is a root of an error - 800
location polynomial

A

Use a positive limb path to determine if a second possible

root is a root of the error location polynomial, including by |- 802

using a sequence of coefficients associated with the error
location polynomial

A
Reverse the sequence of coefficients

- 804

A

Use a negative limb path to determine if a third possible
root is a root of the error location polynomial, including by
using the reversed sequence of coefficients, wherein (1)
the negative limb path is a copy of the positive limb path
and (2) at least one of using the positive limb path or
using the negative limb path includes (a) generatinga |/ 806
remainder polynomial using a symbolized minimal
polynomial combinational network and (b) evaluating the
remainder polynomial at a given possible root of the error
location polynomial using a first symbolized basis
transformer associated with the given possible root

A

Evaluate the remainder polynomial at a fourth possible
root of the error location polynomial using a second
symbolized basis transformer associated with the fourth
possible root, wherein the given possible root and the
fourth possible root are conjugates

- 808

End

FIG. 8

U.S. Patent Sep. 27, 2016 Sheet 10 of 12 US 9,455,747 B1

9082 \l 1p4 —» SBT4 | %

910a

908b

)s 900a
Hinge Path —»
Sequence Na™),
Reverser A@™),
— -2
904a /\é}(&))
908c ’
N
910b A,
908d - Ag'®),
LP 4 —> S'BT 4 > /\(028),
910c (
908e
L
)s 900b
Hinge Path —» A(a®), A(@®), ... 902b 906b
Sequence /\207),
Reverser ANa?), ...
~ 6
904b Aé&‘z’))’
a08f 5’
A(a”),
/\(0(21),

FIG. 9

U.S. Patent Sep. 27, 2016 Sheet 11 of 12 US 9,455,747 B1

(Start)

A

Determine if a first possible root is a root of an error - 1000
location polynomial

A

Use a positive limb path to determine if a second possible

root is a root of the error location polynomial, including by |- 1002

using a sequence of coefficients associated with the error
location polynomial

A
Reverse the sequence of coefficients

- 1004

A

Use a negative limb path to determine if a third possible
root is a root of the error location polynomial, including by
using the reversed sequence of coefficients, wherein (1)
the negative limb path is a copy of the positive limb path
and (2) at least one of using the positive limb path or
using the negative limb path includes (a) generatinga |/ 1006
remainder polynomial using a symbolized minimal
polynomial combinational network and (b) evaluating the
remainder polynomial at a given possible root of the error
location polynomial using a first symbolized basis
transformer associated with the given possible root

A

Evaluate the remainder polynomial at a fourth possible
root of the error location polynomial using a second
symbolized basis transformer associated with the fourth
possible root, wherein (1) the given possible root and the |- 1008
fourth possible root are conjugates and (2) each
remainder polynomial generated by each symbolized
minimal polynomial combinational network is used by two
or more symbolized basis transformers

End

FIG. 10

U.S. Patent Sep. 27, 2016 Sheet 12 of 12 US 9,455,747 B1

LP 4 —» S-BT4 | I— 20

1000a 4}

Hinge Path —» A(

Sequence
Reverser

1000 /*

LP 4 —» S-BT4 ||—» 28

1000¢ 4}

Hinge Path —» A(

Sequence
Reverser

10004
FIG. 11

US 9,455,747 B1

1
PARALLEL CHIEN SEARCH WITH
FOLDING AND A SYMBOLIZED MINIMAL
POLYNOMIAL COMBINATIONAL
NETWORK (S-MPCN)

CROSS REFERENCE TO OTHER
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application No. 61/805,765 entitled AREA-EFFICIENT
PARALLEL CHIEN SEARCH FOR STRONG BCH
DECODERS filed Mar. 27, 2013 which is incorporated
herein by reference for all purposes.

BACKGROUND OF THE INVENTION

A Chien search is used in BCH decoding to iteratively
examine all possible values (e.g., for a total of N values) to
find the roots of an error location polynomial, A(x)=
AX+ ... +Ax+A,. The roots of the error location polyno-
mial identify locations of errors, for example in data
received over a communications channel or read back from
storage. In other words, a Chien search essentially finds the
locations of errors when given an error location polynomial.
To improve the decoding efficiency for long BCH codes,
multiple successive locations can be examined using a
parallel Chien search. Although a number of parallel Chien
search architectures are known, it would be desirable if new
parallel Chien search architectures which require less logic
could be developed. Less logic corresponds to lower semi-
conductor costs, smaller semiconductor die sizes (which is
attractive for mobile and/or handheld products), and/or
reduced power consumption.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1 is a diagram showing an embodiment of a storage
system which includes a parallel Chien search block with
folding and/or a symbolized minimal polynomial combina-
tional network (S-MPCN).

FIG. 2 is a flowchart illustrating an embodiment of a
parallel Chien search process with folding.

FIG. 3A shows an embodiment of a 16-parallel Chien
search block with folding with a single hinge path.

FIG. 3B shows an embodiment of a 16-parallel Chien
search block with folding with two hinge paths.

FIG. 4 is a diagram showing an embodiment of a remain-
der polynomial which is common to two possible roots
which are conjugates.

FIG. 5 is a flowchart illustrating an embodiment of
performing a parallel Chien search using a shared S-MPCN
block.

FIG. 6 is a diagram illustrating an embodiment of a
parallel Chien search block which includes shared S-MPCN
blocks.

FIG. 7 is a table showing an embodiment of related
conjugate roots at-a’,

FIG. 8 is a flowchart illustrating an embodiment of
parallel Chien search with folding and S-MPCN.

FIG. 9 shows an embodiment of a 16-parallel Chien
search block with folding and S-MPCN.

FIG. 10 is a flowchart illustrating an embodiment of a
process for performing parallel Chien search with folding
and S-MPCN where there are no unshared S-MPCN blocks.

20

35

40

45

55

60

2

FIG. 11 is a diagram illustrating an embodiment of a
system which performs parallel Chien search with folding
and S-MPCN where there are no unshared S-MPCN blocks.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composi-
tion of matter; a computer program product embodied on a
computer readable storage medium; and/or a processor, such
as a processor configured to execute instructions stored on
and/or provided by a memory coupled to the processor. In
this specification, these implementations, or any other form
that the invention may take, may be referred to as tech-
niques. In general, the order of the steps of disclosed
processes may be altered within the scope of the invention.
Unless stated otherwise, a component such as a processor or
a memory described as being configured to perform a task
may be implemented as a general component that is tem-
porarily configured to perform the task at a given time or a
specific component that is manufactured to perform the task.
As used herein, the term ‘processor’ refers to one or more
devices, circuits, and/or processing cores configured to
process data, such as computer program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying fig-
ures that illustrate the principles of the invention. The
invention is described in connection with such embodi-
ments, but the invention is not limited to any embodiment.
The scope of the invention is limited only by the claims and
the invention encompasses numerous alternatives, modifi-
cations and equivalents. Numerous specific details are set
forth in the following description in order to provide a
thorough understanding of the invention. These details are
provided for the purpose of example and the invention may
be practiced according to the claims without some or all of
these specific details. For the purpose of clarity, technical
material that is known in the technical fields related to the
invention has not been described in detail so that the
invention is not unnecessarily obscured.

FIG. 1 is a diagram showing an embodiment of a storage
system which includes a parallel Chien search block with
folding and/or a symbolized minimal polynomial combina-
tional network (S-MPCN). In this example, data which is
stored on storage 100 is error correction encoded using a
BCH code. Read processor 102 is responsible for accessing
and error correction decoding data which is stored on
storage 100. In some embodiments, storage 100 comprises
solid state storage, such as NAND Flash. In some embodi-
ments, read processor 102 is implemented on or using a
semiconductor device, such as an application-specific inte-
grated circuit (ASIC) or a field-programmable gate array
(FPGA). For clarity, elements which are unrelated to the
techniques described herein (such as a write processor which
corresponds to read processor 102 or a BCH encoder which
corresponds to BCH decoder 104) are not shown in this and
other figures.

Read processor 102 includes BCH decoder 104 which
error correction decodes the BCH encoded data and outputs
decoded data (if possible). BCH decoder 104 includes
syndrome calculator 106, key equation solver 108, and
parallel Chien search block 110. Syndrome calculator 106
calculates one or more syndromes (e.g., in the form of a
syndrome polynomial) using the BCH encoded data. The
syndromes are passed to key equation solver 108 which
generates an error location polynomial from the syndromes.

US 9,455,747 B1

3

Parallel Chien search block 110 solves for the roots of the
error location polynomial by iteratively examining all poten-
tial roots. In other words, all possible values in the Galois
Field (GF) are tested. More formally, let A(x)=
AX+ . .. +A;x+A, be the error location polynomial where
A, eGF(2™). Let M, (x) be the minimal polynomial of o’ with
degree m (at most). Let a;, be the primitive element if M,
(x) is used to construct GF(2™), where a,, eGF(2™). Let
0y ;5 be the k™ coordinate of i, where o, €GF(2™) and
O i €GF(2).

An (N, K, t) BCH code has block length of N bits and
information length of K bits. While operating under GF(2™),
the code has an error correcting capability of t, where
N-K=m*t. A Chien search (in general) iteratively examines
all possible values (for a total of N values) to find the root(s)
of error location polynomial A(x). A parallel Chien search
(in general) examines multiple locations in parallel.

If the number of roots located by parallel Chien search
block 110 equals the degree of the error location polynomial,
then decoding is successful, the locations of the errors are
corrected (e.g., by flipping the bits in those locations), and
the decoded data is output by parallel Chien search block
110. If the number of located roots does not equal the degree
of' the error location polynomial, then the errors contained in
the BCH encoded data have exceeded the error correction
capability of the BCH code and decoding is unsuccessful.

A variety of parallel Chien search architectures are
described herein and any combination of them may be
employed by parallel Chien search block 110. First, parallel
Chien search with folding is described. Next, S-MPCN is
described, which is another type of parallel Chien search.
Then, a combination of parallel Chien search with folding
and S-MPCN is described. Finally, a combination of parallel
Chien search with folding and S-MPCN with further
improvements is described.

Parallel Chien Search with Folding

FIG. 2 is a flowchart illustrating an embodiment of a
parallel Chien search process with folding. In some embodi-
ments, parallel Chien search block 110 in FIG. 1 performs
the example process shown.

At 200, it is determined if a first possible root is a root of
an error location polynomial. In some embodiments, step
200 is performed by a hinge path.

At 202, a positive limb path is used to determine if a
second possible root is a root of the error location polyno-
mial, including by using a sequence of coefficients associ-
ated with the error location polynomial. For example, the
sequence of coefficients may be (A, A, |, ..., A, Ay) where
the error location polynomial is AX)=AX+ . .. +A,x+A,. In
various embodiments, the sequence of coefficients is
received from the hinge path, or from a key equation solver.

At 204, the sequence of coefficients is reversed. For
example, the sequence of coefficients (A, A, ;, ..., A, Ay)
becomes the reversed sequence (Ag, Ay, . . ., A, A).

At 206, a negative limb path is used to determine if a third
possible root is a root of the error location polynomial,
including by using the reversed sequence of coeflicients,
wherein the negative limb path is a copy of the positive limb
path. To put it another way, a given negative limb path is a
copy of a corresponding positive limb path.

Mathematically, it can be proven that a negative limb path
(which is a copy of its corresponding positive limb path)
which inputs a reversed sequence of coeflicients still prop-
erly tests whether a given possible root is a root of the error
location polynomial. For example, suppose the error loca-
tion polynomial has three coefficients: A(X)=A, X>+A X+A,.
An exemplary positive limb path tests the root o.'. This
corresponds to checking whether A(a')=A,0?+A c+A,
equals 0. A corresponding negative limb path checks
whether A(e™)=A,a2+A, a7 +A, equals 0. A(c™") can be

10

30

35

40

45

50

4

rewritten as o (A,e>+A,0'+A,). Note that the coefficients
within the summation in A(a™") are (A,, A, A,) and the
coefficients in A(a') are (A,, A, Ap), which is the same
sequence but reversed. Since the test is whether or not the
evaluated polynomial is zero or not (so any change in
magnitude or sign due to o= in A(a™') is moot), this
demonstrates that a negative limb path which is a copy of the
corresponding positive limb path and which inputs the
reversed sequence of coefficients properly tests whether a
given possible root is a root of the error location polynomial.

Although a positive limb path could be a copy of the
corresponding negative limb path, having a negative limb
path be a copy of the corresponding positive limb path is
preferable in some applications because a negative limb path
costs more than its corresponding positive limb path (e.g., a
negative limb path requires more logic than its correspond-
ing positive limb path). In such cases, having the negative
limb path be a copy of the corresponding positive limb path
reduces the amount of logic used.

The following figures show examples of systems which
perform the process of FIG. 2.

FIG. 3A shows an embodiment of a 16-parallel Chien
search block with folding with a single hinge path. In the
example shown, 16 possible roots of an error location
polynomial are examined in parallel per iteration. Each path
in sets 300, 302, and 306 includes logic (not shown) for
examining a given possible root of the error location poly-
nomial.

At a first iteration, hinge path 300 examines the 0”
possible root (e.g., o is the 0% possible root and A(a.°) is the
examination of the 0% possible root). The evaluation by
hinge path 300 at the first iteration uses a sequence of
coefficients associated with the first iteration: (A,
A, ..., AL, Ap). Referring back to FIG. 1, the sequence
of coeflicients associated with the first iteration may be
passed from key equation solver 108 to parallel Chien search
block 110 (i.e., hinge path 300 is not responsible for gen-
erating the sequence of coefficients for the first iteration).
Hinge path 300 is one example of a component which
performs step 200 in FIG. 2.

At the first iteration, positive limb paths 302 test whether
the 1°-8” possible roots (i.e., o', . . ., a®) are roots of the
error location polynomial using the sequence of coefficients
associated with the first iteration (i.e., (A, A, 1, . . . s A}, Ag))-
Positive limb paths 302 show various examples of compo-
nents which perform step 202 in FIG. 2.

The sequence of coefficients is passed to sequence
reverser 304 which reverses the sequence input to it. For
example, at the first iteration, the sequence (A, A, |, ..., A,
A,) becomes (Ag, Ay, ..., A, A). Sequence reverser 304
is one example of a component which performs step 204 in
FIG. 2.

The reversed sequence of coefficients associated is passed
from sequence reverser 304 to negative limb paths 306. At
the first iteration, the reversed sequence of coefficients
associated with the first iteration (i.e., (A,, A, |, . .., A}, Ag))
is used by negative limb paths 306 to test whether the
(=7)"-(=1)** possible roots (i.e., o, ..., a”') are roots of
the error location polynomial. Negative limb paths 306 show
various examples of components which perform step 206 in
FIG. 2.

Hinge path 300 updates the sequence of coeflicients
associated with the first iteration (i.e., (A,, A, 1, . .., A, Ap))
to obtain a sequence of coefficients associated with a second
iteration (ie., (A, A", . . ., A/, A)). At the second
iteration, positive limb paths 302, sequence reverser 304,
and negative limb paths 306 operate the same as described
above, except they test different possible roots and use the
updated (reversed) sequence of coefficients. That is, nega-
tive limb paths 306 and positive limb paths 302 test the

US 9,455,747 B1

5
9%.15" possible roots and the 17%-24” possible roots,
respectively, using the reversed sequence of coefficients
associated with the second iteration (i.e., (A, A"y ..., A",
A;)) and the sequence of coefficients associated with the
second iteration (i.e., (A, A, ', ..., A", AY)), respectively.

This process continues until all possible roots of the error
location polynomial have been tested.

It is noted that the highest order limb path shown is this
figure is an 8% order limb path (i.e., limb path 8). In at least
some parallel Chien search architectures, higher order limb
paths correspond to more logic, which is undesirable. As
such, the example 16-parallel Chien search block with
folding shown herein may be more attractive compared to
some other 16-parallel Chien search block. For example,
compared to a 16-parallel Chien search block which has a
single hinge path and 1°-15% order limb paths, this 16-par-
allel Chien search block with folding may use less logic
because even though the number of limb paths is the same,
the order of the limb paths is lower.

Note that parallel Chien search with folding works with
different types of parallel Chien search architectures; the
technique is not limited to any particular type of parallel

Chien search architecture. In other words, hinge path 300
and/or limb paths 302 and 306 may be implemented using a
variety of techniques.

FIG. 3B shows an embodiment of a 16-parallel Chien
search block with folding with two hinge paths. FIG. 3B is
similar to FIG. 3A, except FIG. 3B has two hinge paths and
FIG. 3A has a single hinge path. Hinge paths 3504 and 3505,
positive limb paths 352a and 3525, sequence reversers 354a
and 354b, and negative limb paths 356a and 3565 operate
the same as described in FIG. 3A.

In some applications, the number of hinge paths used in
a parallel Chien search block with folding is selected based
on a cost function. For example, a cost may be calculated
which depends upon the number of hinge paths, the number
of limb paths, and the order of the limb paths. Depending
upon the degree of parallelism desired (e.g., 16-parallel,
32-parallel, 64-parallel, etc.) and the underlying costs (e.g.,
of a single hinge path, of a single limb path of a given order,
etc.), a number of hinge paths which minimizes the cost
function may be determined.

The following figures describe S-MPCN. In the examples
described below, information is shared amongst paths which
permits logic to be reused and reduces the total amount of
logic in the system compared to some other parallel Chien
search architectures.

S-MPCN

In general, the examination of the i” possible root o is:

t
Ad) = ZAJ-O/J' +1
=1

10

15

20

i+1

i+l
il -

0 1 1 i

@y @ .of @y
o) ot ot e o
0 1 -1

Upp | gy wer O Uy @
bio
biy

b2y

40

45

50

55

60

6

In S-MPCN, minimal polynomials are used to divide A(x)
directly. More formally:

1
A=Y A +1=
=1

t
DA | i+l = M@ X Qi)+ Bi(0) | i +1 = Bie) + 1,
=1

where B,(x)=B, . x""'+ . . . +B, x+B, ; is the remainder
polynomial and B, €GF(2™). Let {B, ,,.,, . . ., B,,, B,g}=
{b, 215 b, 1, b, o}, where b, €GF(2). Note that dividing
A(x) directly by the minimal polynomial(s) permits or
results in the substitution of at least some Constant Finite
Field Multiplier (CFFM)-implemented parallel paths with
S-MPCN-implemented paths in S-MPCN compared to some
other parallel Chien search techniques.

The evaluation of the remainder polynomial at the i
possible root (i.e., B,(a")) becomes:

ozé;’m’l wgm’” wgm’”“ . wg“)(m’”
. w‘f’m’l 0/.1('"’” oz‘.l(m’”“ . w(l‘.“)(m’”
otml P N S S Y)

m—1 m—1 m—1 m—1

A block which performs this operation (i.e., evaluating the
remainder polynomial) is referred to as an i” symbolized
basis transformer (S-BT 1).

To obtain B,(x) efficiently, consider ¥ mod M,(x). If M,(x)
is used as the primitive polynomial, then the m-tuple rep-
resentation becomes:

xmod M;(x) = wf,,,ly(‘-)){"’l o tod gr+adg

The remainder polynomial B,(x) can be constructed based
on ¥ mod M,(x):

Bi(x) = Biyy X" ... + B x+ Big

t
/\jxj mod M;(x) = Z /\j(xj mod M;(x))
=

.
I

=) (Ajag o @ L+ A X+ Ajad)
=

Therefore, the examination of the i possible root
becomes:

Ale) = Mi(x) X Qi) + Bi(x) | _i +1 = Bie') +1

US 9,455,747 B1

7

-continued

Ao+ A x + Ajad) | o +1

.M"

S

Note that the equation for A(a’) contains within it the
equation for B,(x).

For examinations of possible roots which are conjugates,
it is possible to share logic since they have the same minimal

polynomial. For example, the examination of the 2i” pos-
sible root is:
A@¥) = Byi(@®) + 1
1
ZA (x/ mod My(x))|_,2 +1 _ZA (v mod Mi(x)|,_a +1

= =i
‘ .
4
Z (AJ) (‘);K" o+ Aje] px +
= j=1

A)| i +1 = Bi@d®) +1

FIG. 4 is a diagram showing an embodiment of a remain-
der polynomial which is common to two possible roots
which are conjugates. In the example shown, equation 400
shows the examination of a first possible root (i.e., &’) and
equation 410 shows the examination of a second possible
root (i.e.,). Note that the two possible roots which are
being examined in equations 400 and 410 are conjugates of
each other. A more detailed description of conjugate possible
roots is provided below.

Looking closely at equations 400 and 410, the summa-
tions within equations 400 and 410 are the same (when the
evaluation of the summations at x=o versus at x=a.* is not
taken into consideration). For example, the summations are
both over j=1, . . ., t and the terms being summed are both

j -1 J J
(Ajwfn,ly(‘-)){" o+ A X+ Ajag)

Referring back to the remainder polynomial B,(x) above, it
is noted that the summation in equations 400 and 410 is
merely the remainder polynomial B,(x).

The shared remainder polynomial in equations 400 and
410 means that the logic used to generate the remainder
polynomial can be shared between the parallel paths asso-
ciated with the examination of the i” possible root (i.e.,
A(ce?)) and the examination of the 2i” possible root (i.e.,
A(0*)). As shown in equations 400 and 410, this shared
piece of logic which generates the remainder polynomial is
referred to as an i’ S-MPCN block.

The evaluation of the remainder polynomial is where
equations 400 and 410 differ. In equation 400, the remainder
polynomial is evaluated at x=c’ and in equation 410, the
remainder polynomial is evaluated at x=a.*. As such, a first
block (ie., an i’ S-BT block) is used to evaluate the
remainder polynomial at x=c’ and a second block (i.e., a 2i”
S-BT block) is used to evaluate the remainder polynomial at
x=o.

Table 420 shows possible roots which are conjugates and
therefore which can share logic (specifically, share an
S-MPCN block). Generally speaklng, conjugate roots fall
within the set {, a%, o, o® , &'} where k may be
0,1, 2, and so on. Note that i may be a negative value. Each

10

15

20

40

45

55

8

row shows possible roots which are conjugates and thus
which can share S-MPCN logic. In the first row, i=1 and the
set of conjugate roots is {a', o, o, a®, . .. }. In the second
row, i=3 and the set of conjugate roots is {c’, af, o'
o, ... }. Note that although i could be set to 2, the row
where i=1 already includes . As such, i=2 is not shown in
table 420 since a S-MPCN 2 block would be redundant since
a S-MPCN 1 block already generates a remainder polyno-
mial which can be used for a”.

Continuing on, the third row in table 420 shows the set of
conjugate roots which result when i=5 and the fourth row in
table 420 shows the set of conjugate roots which result when
i=7. Rows for i=4 and i=6 are not included in table 420
because o* is already included in the first row (where i=1)
and of is already included in the second row (where i=3).
Therefore, including an S-MPCN 4 block and/or an
S-MPCN 6 block is unnecessary and/or redundant.

FIG. 5 is a flowchart illustrating an embodiment of
performing a parallel Chien search using a shared S-MPCN
block. In some embodiments, parallel Chien search block
110 in FIG. 1 performs the example process shown.

At 500, a remainder polynomial is generated using a
symbolized minimal polynomial combinational network.
For example, in equations 400 and 410 in FIG. 4, an i**
shared S-MPCN block does this.

At 502, the remainder polynomial is evaluated at a first
possible root of an error location polynomial using a first
symbolized basis transformer associated with the first pos-
sible root. In equation 400 in FIG. 4, for example, o is one
example of a first possible root. In the example of equation
400, an i” S-BT block evaluates the remainder polynomial
generated by S-MPCN i for x=a'.

At 504, the remainder polynomial is evaluated at a second
possible root of the error location polynomial using a second
symbolized basis transformer associated with the second
possible root, wherein the first possible root and the second
possible root are conjugates. In equation 410 in FIG. 4, for
example, o is one example of a second root. In the example
of equation 410, a 2i”* S-BT block evaluates the remainder
polynomial generated by S-MPCN i for x=0.*. Note that o/
and o’ are conjugates which satisfies the requirement that
the first possible root and the second possible root be
conjugates.

FIG. 6 is a diagram illustrating an embodiment of a
parallel Chien search block which includes shared S-MPCN
blocks. In some embodiments, parallel Chien search block
110 in FIG. 1 is implemented as shown.

In one example of logic which performs the process of
FIG. 5, step 500 in FIG. 5 is performed by S-MPCN 1 (600).
S-MPCN 1 (600) generates a remainder polynomial (not
shown) which is passed to S-BT 1 (602) and S-BT 2 (604).
In this example, the first possible root is &' and the second
possible root is o®. S-BT 1 (602) evaluates the remainder
polynomial at x=a* (i.e., performing step 502 in FIG. 5) and
S-BT 2 (604) evaluates the remainder polynomial at x=c.
(i.e., performing step 504 in FIG. 5).

Similarly, S-MPCN 3 (610), S-BT 3 (614), and S-BT 6
(616) show another example of logic which performs the
process of FIG. 5. In that example, S-MPCN 3 (610)
performs step 500 in FIG. 5, S-BT 3 (614) performs step 502
in FIG. 5, and S-BT 6 (616) performs step 504 in FIG. 5.

Logic 618 shows an example of a hinge path (e.g., hinge
path 300 in FIG. 3A and/or hinge path 3504a or 3505 in FIG.
3B).

FIG. 7 is a table showing an embodiment of related
conjugate roots o.'-c>2. In table 700, each row corresponds
to a group of conjugate roots which share an S-MPCN block

US 9,455,747 B1

9

to generate a remainder polynomial which is common to all
of'them (in some figures herein, the S-MPCN block is shown
as grouped in one parallel path, and the produced remainder
polynomial is passed to other parallel paths). As indicated in
FIG. 7, as the magnitude of i increases, the cost (e.g., in
terms of size or the amount of logic) of a given S-MPCN
block increases. For example, the size of the 31 S-MPCN
block (i.e., corresponding to the last row where i=31) is
larger than the size of the 1% S-MPCN block (i.e., corre-
sponding to the first row where i=1). For this reason,
combining parallel Chien search with folding and S-MPCN
is attractive because parallel Chien search with folding
effectively reduces the largest magnitude of i which is used.
In some cases, although the number of S-MPCN blocks may
remain substantially the same, the overall amount of logic
used may be smaller when parallel Chien search with
folding is used in combination with S-MPCN because the
S-MPCN blocks used are smaller. The following figures
show some examples of parallel Chien search with folding
and S-MPCN.

Parallel Chien Search with Folding and S-MPCN

FIG. 8 is a flowchart illustrating an embodiment of
parallel Chien search with folding and S-MPCN. In some
embodiments, the process is performed by parallel Chien
search block 110 in FIG. 1.

At 800, it is determined if a first possible root is a root of
an error location polynomial. At 802, a positive limb path is
used to determine if a second possible root is a root of the
error location polynomial, including by using a sequence of
coeflicients associated with the error location polynomial. At
804, the sequence of coeflicients is reversed. Note that steps
800, 802, and 804 are similar to steps 200, 202, and 204
shown in FIG. 2.

At 806, a negative limb path is used to determine if a third
possible root is a root of the error location polynomial,
including by using the reversed sequence of coefficients. The
negative limb path is a copy of the positive limb path and at
least one of using the positive limb path or using the
negative limb path includes: (a) generating a remainder
polynomial using a S-MPCN and (b) evaluating the remain-
der polynomial at a given possible root of the error location
polynomial using a first S-BT associated with the given
possible root. It is noted that either a positive limb path or
a negative limb path can satisty the limitation associated
with generating a remainder polynomial using an S-MPCN
and evaluating the remainder polynomial using an S-BT.

At 808, the remainder polynomial is evaluated at a fourth
possible root of the error location polynomial using a second
S-BT associated with the fourth possible root, wherein the
given possible root and the fourth possible root are conju-
gates. For example, FIG. 7 shows some example related
conjugate roots. In some embodiments, if step 806 is per-
formed by a positive (negative) limb path then step 808 is
also performed by a positive (negative) limb path. Note that
step 808 is applicable when two or more S-BT blocks share
a given S-MPCN block. If the remainder polynomial output
by a given S-MPCN block is used by only one S-BT block,
then step 808 is skipped.

The following figure shows an example of a system which
performs the process of FIG. 8.

FIG. 9 shows an embodiment of a 16-parallel Chien
search block with folding and S-MPCN. In the example
shown, at a first iteration, hinge paths 900a and 9005
evaluate whether a 0 possible root and an 8% possible root,
respectively, are roots of the error location polynomial.
Hinge paths 9004 and 9005 show two examples of compo-
nents which perform step 800 in FIG. 8.

10

15

20

25

30

35

40

45

50

55

60

65

10

Positive limb paths 902a and 9025 evaluate at the first
iteration whether a 1° possible root and a 9 possible root,
respectively, are roots of the error location polynomial. Note
that both receive as inputs the sequence of coefficients
associated with the error location polynomial and use that
sequence in their processing. Positive limb paths 902a and
9025 are two examples of components which perform step
802 in FIG. 8.

Sequence reversers 904a and 9045 reverse the sequence
of coeflicients and show two examples of components which
perform step 804 in FIG. 8.

Negative limb paths 906a and 9065 evaluate at the first
iteration whether a (=1)* possible root and a 7% possible
root, respectively, are roots of the error location polynomial.
Note that both use the reversed sequence of coefficients
associated with the error location polynomial in their pro-
cessing. Negative limb paths 906a and 9065 are two
examples of components which perform step 806 in FIG. 8.

Step 806 in FIG. 8 also recites the limitation that at least
one of using the positive limb path or using the negative
limb path includes (a) generating a remainder polynomial
using an S-MPCN and (b) evaluating the remainder poly-
nomial at a given possible root of the error location poly-
nomial using a first S-BT associated with the given possible
root. Positive limb paths 902a¢ and 9026 and negative limb
paths 9064 and 9065 show examples of components which
satisfy this. Note, for example, that positive limb paths 902a
and 9026 and negative limb paths 906a and 9065 each
include an S-MPCN for generating a remainder polynomial,
as well as an S-BT for evaluating the remainder polynomial
at the particular possible root.

Limb paths 908a-908f input remainder polynomials from
shared S-MPCN blocks (e.g., the S-MPCN block in positive
limb path 902a is shared amongst positive limb paths 902a,
908a, and 908b). At the first iteration, limb paths 908a-908f
evaluate whether a 4%, 27 (-2y* 12% 10*, and 6"
possible root, respectively, are roots of the error location
polynomial. Limb paths 908a-908f show various examples
of components which perform step 808 in FIG. 8.

It is noted that the (reversed) sequence of coefficients are
only passed to limb paths which include an S-MPCN. Limb
paths which only include an S-BT use the results from a
shared S-MPCN, so it is not necessary to pass the (reversed)
sequence of coefficients to limb paths which only include an
S-BT.

The 16-parallel Chien search block shown in FIG. 9 offers
some improvements over that shown in FIG. 3B. Specifi-
cally, the 16-parallel Chien search block in FIG. 9 shares
S-MPCN blocks, which is not necessarily the case in FIG.
3B (e.g., each limb path in FIG. 3B could have its own
S-MPCN block, which is inefficient). By sharing S-MPCN
blocks, the amount of logic consumed may be reduced.

Obviously, the more paths a given S-MPCN block is
shared amongst, the greater the savings in logic. Looking at
FIG. 9, it is noted that some of the S-MPCN are only used
by a single limb path, or a single S-BT block. For example,
the remainder polynomials generated by limb paths 910a-
910d are only used by the S-BT blocks therein. To put it
another way, the S-MPCN blocks in limb paths 9104-9104
are not shared. The following figure shows an example
where limb paths with unshared S-MPCN blocks are
replaced by limb paths which require less logic.

Parallel Chien Search with Folding and S-MPCN (No
Unshared S-MPCN)

FIG. 10 is a flowchart illustrating an embodiment of a
process for performing parallel Chien search with folding
and S-MPCN where there are no unshared S-MPCN blocks.

US 9,455,747 B1

11

In some embodiments, parallel Chien search block 110 in
FIG. 1 performs the process shown.

At 1000, it is determined if a first possible root is a root
of an error location polynomial. At 1002, a positive limb
path is used to determine if a second possible root is a root
of the error location polynomial, including by using a
sequence of coeflicients associated with the error location
polynomial. At 1004, the sequence of coefficients is
reversed. At 1006, a negative limb path is used to determine
if a third possible root is a root of the error location
polynomial, including by using the reversed sequence of
coeflicients, wherein (1) the negative limb path is a copy of
the positive limb path and (2) at least one of using the
positive limb path or using the negative limb path includes
(a) generating a remainder polynomial using a symbolized
minimal polynomial combinational network and (b) evalu-
ating the remainder polynomial at a given possible root of
the error location polynomial using a first symbolized basis
transformer associated with the given possible root. At 1008,
the remainder polynomial is evaluated at a fourth possible
root of the error location polynomial using a second sym-
bolized basis transformer associated with the fourth possible
root, wherein (1) the given possible root and the fourth
possible root are conjugates and (2) each remainder poly-
nomial generated by each symbolized minimal polynomial
combinational network is used by two or more symbolized
basis transformers. As described above, step 1008 is appli-
cable when two or more S-BT blocks share a S-MPCN block
and is skipped when only a single S-BT block uses the
remainder polynomial out by a S-MPCN block.

The following figure shows an example system which
performs the process of FIG. 10.

FIG. 11 is a diagram illustrating an embodiment of a
system which performs parallel Chien search with folding
and S-MPCN where there are no unshared S-MPCN blocks.
In the example shown, limb paths 10004-10004 are imple-
mented using a strength reduced parallel path, which
requires less logic than a similar path which includes an
S-MPCN block and a S-BT block. In some applications, the
system shown in FIG. 11 uses less logic than the figure
shown in FIG. 9 and (as such) is more attractive (assuming
there are no other tradeoffs).

Although FIG. 11 shows negative limb paths 10005 and
10004 as inputting the reversed sequence of coefficients,
naturally in some embodiments those negative limb paths
input the non-reversed sequence of coefficients. For
example, some replacement negative limb paths may expect
the non-reversed sequence of coeflicients and the appropri-
ate sequence is provided.

Note that a strength reduced parallel path is merely an
exemplary replacement parallel path. Any parallel path
architecture may be used, preferably so long as less logic is
used. It is not necessary for all replacements paths to be the
same type. For example, one type of replacement may be the
best option for positive limb path 1000a, but a different type
of replacement may be the best option for negative limb path
10005. In some embodiments, there may be a crossover
point where replacement makes sense. For example, as
described above, as the magnitude of i associated with an
S-MPCN block increases, the cost increases. There may be
an alternative parallel Chien search architecture for which
for smaller magnitudes of 1 it does not make sense to swap
out the S-MPCN block and S-BT block. However, for larger
magnitudes of i it may make sense to make the substitution.
These factors and other factors may be taken into consid-
eration when selecting a replacement limb path.

40

45

50

55

12

Although the foregoing embodiments have been
described in some detail for purposes of clarity of under-
standing, the invention is not limited to the details provided.
There are many alternative ways of implementing the inven-
tion. The disclosed embodiments are illustrative and not
restrictive.

What is claimed is:

1. A system for decoding data by performing a parallel
Chien search, comprising:

a syndrome calculator configured to receive encoded data
and to generate one or more syndromes using the
encoded data;

a key equation solver configured to generate an error
location polynomial from the syndromes; and

a parallel Chien search block configured to locate a
number of roots and output decoded data when the
number of roots equals a degree of the error location
polynomial, the parallel Chien search block including:

a hinge path configured to determine whether a first root
is a root of the error location polynomial;

a positive limb path configured to determine whether a
second root is a root of the error location polynomial
based on a sequence of coefficients associated with the
error location polynomial;

a sequence reverser configured to reverse the sequence of
coeflicients;

a negative limb path configured to determine whether a
third root is a root of the error location polynomial
based on the reversed sequence of coefficients,

a symbolized minimal polynomial combinational network
configured to generate remainder polynomials;

a first symbolized basis transformer configured to evalu-
ate a first remainder polynomial generated by the
symbolized minimal polynomial combinational net-
work; and

a second symbolized basis transformer configured to
evaluate a second remainder polynomial generated by
the symbolized minimal polynomial combinational net-
work,

wherein the symbolized minimal polynomial combina-
tional network is shared by the first symbolized basis
transformer and the second symbolized basis trans-
former.

2. The system of claim 1, wherein the syndrome calculator
is configured to generate the syndromes using BCH encoded
data.

3. The system of claim 2, further comprising solid state
storage, wherein the BCH encoded data is stored on the solid
state storage.

4. The system of claim 1, wherein the system is config-
ured to determine decoding of the block is successful when
a number of roots located equals a degree of the error
location polynomial.

5. A system for decoding data by performing a parallel
Chien search, comprising:

a syndrome calculator configured to receive encoded data
and to generate one or more syndromes using the
encoded data;

a key equation solver configured to generate an error
location polynomial from the syndromes; and

a parallel Chien search block configured to locate a
number of roots and output decoded data when the
number of roots equals a degree of the error location
polynomial, the parallel Chien search block including:

a symbolized minimal polynomial combinational network
configured to generate remainder polynomials;

US 9,455,747 B1

13

a first symbolized basis transformer, associated with a first
root of the error location polynomial, which is config-
ured to evaluate a first remainder polynomial generated
by the symbolized minimal polynomial combinational
network at the first root of the error location polyno-
mial; and

a second symbolized basis transformer, associated with a
second root of the error location polynomial, which is
configured to evaluate a second remainder polynomial
generated by the symbolized minimal polynomial com-
binational network at the second root of the error
location polynomial, wherein the first root and the
second root are conjugates,

wherein the symbolized minimal polynomial combina-
tional network is shared by the first symbolized basis
transformer and the second symbolized basis trans-
former.

6. The system of claim 5,

wherein hinge paths use the error location polynomial to
determine partial multiplication terms.

7. The system of claim 5, wherein the syndrome calculator
is configured to generate the syndromes using BCH encoded
data.

8. The system of claim 7, further comprising solid state
storage, wherein the BCH encoded data is stored on the solid
state storage.

9. A method for decoding data by performing a parallel
Chien search, comprising:

receiving, with a syndrome calculator, encoded data;

generating, with the syndrome calculator, one or more
syndromes using the encoded data;

generating, with a key equation solver, an error location
polynomial from the generated syndromes;

determining, with a hinge path whether a first root is a root
of the error location polynomial;

determining, with a positive limb path, whether a second
root is a root of the error location polynomial based on
a sequence of coefficients associated with the error
location polynomial;

reversing, with a sequence reverser, the sequence of
coefficients;

determining, with a negative limb path, whether a third
root is a root of the error location polynomial based on
the reversed sequence of coefficients, wherein the nega-
tive limb path is a copy of the positive limb path,

generating, with a symbolized minimal polynomial com-
binational network, remainder polynomials,

evaluating, with a first symbolized basis transformer, a
first remainder polynomial generated by the symbol-
ized minimal polynomial combinational network,

10

15

20

25

30

35

40

45

14

evaluating, with a second symbolized basis transformer, a
second remainder polynomial generated by the sym-
bolized minimal polynomial combinational network,
the symbolized minimal polynomial combinational net-
work being shared by the first and second symbolized
basis transformer, and

outputting decoded data when a number of roots equals a
degree of the error location polynomial.

10. The method of claim 9, wherein generating the

syndromes includes using BCH encoded data.

11. The method of claim 10, wherein the BCH encoded

data is stored on solid state storage.

12. A method for decoding data by performing a parallel

Chien search, comprising:

receiving, with a syndrome calculator, encoded data;

generating, with the syndrome calculator, one or more
syndromes using the encoded data;

generating, with a key equation solver, an error location
polynomial from the generated syndromes;

generating, with a symbolized minimal polynomial com-
binational network, remainder polynomials;

evaluating, with a first symbolized basis transformer
associated with a first root of the error location poly-
nomial, a first remainder polynomial generated by the
symbolized minimal polynomial combinational net-
work at the first root of the error location polynomial;
and

evaluating, with a second symbolized basis transformer
associated with a second root of the error location
polynomial, a second remainder polynomial generated
by the symbolized minimal polynomial combinational
network at the second root of the error location poly-
nomial, wherein the first root and the second root are
conjugates, and

outputting decoded data when a number of roots equals a
degree of the error location polynomial;

wherein the symbolized minimal polynomial combina-
tional network is shared by the first symbolized basis
transformer and the second symbolized basis trans-
former.

13. The method of claim 12, further comprising:

generating the error location polynomial using the syn-
dromes, wherein hinge paths use the error location
polynomial to determine partial multiplication terms.

14. The method of claim 13, wherein generating the

syndromes includes using BCH encoded data.

15. The method of claim 14, wherein the BCH encoded

data is stored on solid state storage.

#* #* #* #* #*

